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Abstract
In this paper, we investigate the effect of the stochastic randomization in the
on-ramp system using the cellular automata traffic flow model. Both single-
lane main road and two-lane main road situations are studied. The variation
of the phase diagram with the randomization probability p is studied. A new
phase, i.e., the maximum flow phase is reported in the two-lane main road
situation. The capacity of the on-ramp system under different p and vmax is
discussed.

PACS numbers: 45.70.Vn, 89.40.+k, 02.60.Cb

1. Introduction

In the last few decades, traffic problems have attracted the interest of a community of
physicists [1–3]. Recent experimental investigation shows that three distinct dynamic states
are observed on highways: free flow, traffic jam and synchronized flow [4]. In the majority of
cases, synchronized traffic is observed localized near bottlenecks and thus it is believed that
bottlenecks are important for the formation of synchronized traffic. Among the various types
of bottlenecks, the on-ramp is of particular interest to the researchers and has been widely
studied [5–10].

Recently, the authors have studied the interactions between the traffic flows on main road
and on-ramp using the deterministic Nagel–Schreckenberg (NS) model [11]. Different from
the previous works, both the influence of the on-ramp on the main road and the opposite
influence were considered.

Nevertheless, for simplicity, we have confined ourselves in two aspects in [11]: (i) the
simulations are carried out only in the deterministic case; (ii) The main road is assumed to be
single lane. As is known, stochastic randomization plays an important role in the NS model,
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Figure 1. A sketch of the on-ramp system.

e.g., the start–stop waves as observed in real freeway traffic cannot be reproduced without the
introduction of stochastic randomization. So, in this paper, we investigate the stochastic effect
in the on-ramp system using the non-deterministic NS model. On the other hand, in real traffic
the main road is often a two-lane road, so we also extend our simulations to the two-lane main
road situation.

The paper is organized as follows. In section 2, the results of the on-ramp simulation
using the deterministic NS model are briefly reviewed and the capacity of the on-ramp system
is discussed. In section 3, the numerical simulations using the non-deterministic NS model
are presented. In section 4, the two-lane main road situation is investigated. The conclusions
are given in section 5.

2. Deterministic case

The NS model is a basic model of traffic flow on a single-lane highway [12]. The update rules
of the model are as follows. (1) Acceleration: if v < vmax, then v → v + 1. (2) Slowing
down: if v > d, then v → d. (3) Randomization: if v > 0, then v → v − 1 with probability
p. (4) Motion: the position of a car is shifted by its speed v. Here v is the speed of a car,
vmax is the maximum speed of a car, d is the empty cells in front of a car, p is randomization
probability.

In [11], we have focused on the deterministic case p = 0 and have considered an on-
ramp system as shown in figure 1: the main road is single lane and the on-ramp connects
the main road only on one lattice C0. The main road upstream of C0, the on-ramp and
the main road downstream of C0 (including lattice C0) are denoted as roads A, B and C,
respectively.

Let a1 and a2 be the insertion probability of the cars into roads A and B. The simulations
show that in the case vmax = 1, the phase diagram in the (a1, a2) space is categorized into two
regions (see figure 2(a)). In region I, flows on both roads A and B are free and in region II, it
is still free flow on road A but becomes congested on road B.

We have studied the currents JA, JB, and JC on roads A, B and C in [11]. Now we
investigate the capacity of the on-ramp system. Here the capacity is defined as the maximum
flow that can pass the lattice C0 (i.e., the maximum value of JC) under a given insertion
probability a2. In the deterministic case of vmax = 1, the simulation shows that the capacity is
independent of a2 and this constant capacity is equal to the maximum flow Jmax = 0.5.

As for the case of vmax � 2, the simulations show that the phase diagram depends very
weakly on vmax and it is classified into four regions (see figure 3(a)). In region I, the traffic
flows on both roads A and B are free flow; in region II, the traffic is congested on road B
and free flow on road A; in region III, the traffic is congested on road A and is free on road B;
in region IV, the traffic flows are congested on both roads.

We consider the capacity of the on-ramp system for vmax � 2. Without lost of generality,
we choose vmax = 5. The dependence of the capacity on the insertion probability a2 is shown
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Figure 2. The phase diagram of the on-ramp system in the case of vmax = 1. (a) p = 0; (b)
p = 0.1; (c) p = 0.3. Here the four boundaries between the four regions are denoted as boundaries
1–4 as shown in (b). The vertical coordinate of the intersection point of boundary 1 (4) and the
axis is denoted as s1 (s4); the horizontal coordinate of the intersection point of boundary 2 (3) and
the axis is denoted as s2 (s3). In (c) and in figure 3, these symbols are omitted.
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Figure 3. The phase diagram of the on-ramp system in the case of vmax = 5. (a) p = 0;
(b) p = 0.1; (c) p = 0.2; (d) p = 0.4.

in figure 4. One finds that when a2 = 0, the capacity is the maximum, which is equal to the
maximum flow Jmax. With increasing a2, the capacity decreases. When a2 = s4 = 0.2 (see
caption of figure 2 for the definition of s1, s2, s3 and s4), the capacity is the minimum. Then
the capacity increases with increasing a2 until it reaches the maximum again at a2 = 1.
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Figure 4. The dependence of the capacity of the on-ramp system on a2 in the case of vmax = 5
under different values of p.

3. Non-deterministic results

In this section, we consider the stochastic randomization effect in the on-ramp system. As in
[11], we denote the leading cars on roads A and B as Alead and Blead, the last car on road C
as Clast. We also calculate the time ta and tb needed to arrive at C0 for cars Alead and Blead

without randomization:

ta = xC0 − xAlead

min
(
vmax, xClast − xAlead − 1, vAlead + 1

) (1)

tb = xC0 − xBlead

min
(
vmax, xClast − xBlead − 1, vBlead + 1

) (2)

where x denotes the position of the car or the lattice, and v denotes the velocity of the car.
If ta > 1 or tb > 1, then it is obvious that the updates of cars on both roads A and B are

not affected by each other. Else if ta < 1 or tb < 1, we can also update the system according
to the rules given in [11] using the non-deterministic NS models.

However, for the case ta = tb = 1, different rules from that in [11] are needed. This is
explained as follows. We suppose priority is given to car Alead. In the deterministic case, car
Alead will occupy the lattice C0 in the next time step and, as a result, car Blead will occupy the
rightmost lattice on road B. But when the randomization is considered, car Alead will probably
not arrive at the lattice C0 in the next time step. If we still update the system as in [11],
car Blead will probably arrive at the lattice C0. This implies that the car with priority is at a
disadvantage.

To guarantee that the car with priority can benefit, the rules in the case of ta = tb = 1 are
given as follows. Assume the car, say Alead, has the priority. Then the cars on roads A and C
will update according to the NS rules. As for the car Blead, it will react as if the lattice C0 is
occupied.

In the non-deterministic simulations, the same boundary conditions as in [11] are used.
In the simulations, roads A, B and C are classified into 100 × vmax cells, and the first 40,000
time steps are discarded to let transients die out. The current is obtained by counting the
vehicles that pass a virtual detector in 100 000 time steps.

We first consider the case vmax = 1. As a preliminary work, we consider the special case
that there is no car on one road, say, road B. This means a2 = 0, and the problem reduces
to the non-deterministic NS model problem in open boundary conditions. The removal rate
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Figure 5. The current on road A in the case of a2 = 0 and vmax = 1 at different values of
p. The solid line denotes the line with slope 1, the horizontal lines represent the maximum flow
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Figure 6. The dependence of s4 on the randomization probability p in the case of vmax = 1.

on the right boundary is 1 and the injection rate on the left boundary is a1. The numerical
simulation results are shown in figure 5.

In the case of vmax = 1, the maximum flow can be analytically obtained from the mean-
field approximation [13]: Jmax = 1−√

p

2 , which is represented by the horizontal lines in figure 5.
One can see that when a1 is small, the curve of the current against a1 is a straight line with
slope 1. Then with increasing a1, the curve begins to deviate from the straight line and it bends
downwards but still increases with a1. When a1 reaches a critical value a1c, the current reaches
the maximum flow. One also notes that with increasing p, a1c decreases and the deviation
from the straight line occurs earlier.

In figure 2, the phase diagrams in the (a1, a2) space at different values of p are shown.
An obvious difference from the phase diagram in the case of p = 0 is that two new regions
appear. In region III, the traffic is congested on road A and is free on road B; in region IV, the
traffic flows are congested on both roads. Thus, the phase diagram becomes qualitatively the
same as in the case vmax � 2. One can also see that with increasing p, s1, s2 and s3 decreases.
As for s4, it first increases and then decreases with p (figure 6).
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Figure 7. The distribution of the cars in the case of vmax = 1. (a), (b) deterministic cases;
(c) non-deterministic case.
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Figure 8. The current on road A in the case of a2 = 0 and vmax = 5 at different values of p.
The solid line denotes the line with slope 1, the horizontal lines represent the maximum flow from
numerical simulation.

This is explained as follows. Under the deterministic situation, the traffic is homogeneous
when the maximum flow is reached. For this case, two different conditions may appear near
the on-ramp (see figures 7(a) and (b)). Under the two conditions, the vehicles on the on-ramp
cannot enter the main road, thus the flow on the on-ramp is zero. Nevertheless, under the
non-deterministic situation, the traffic is inhomogeneous even when the maximum flow is
reached. Therefore, there may appear such a condition as shown in figure 7(c). For this case,
the vehicle on the on-ramp can enter the main road, thus the flow on the on-ramp is greater
than zero. This causes the appearance of regions III and IV.

We investigate the dependence of the capacity on p. The simulations show that the capacity
always remains a constant equal to the maximum flow. With increasing p, the constant capacity
decreases.

Next we consider the case vmax � 2. Without loss of generality, we choose vmax = 5.
Similar to the case of vmax = 1, we consider the special case that there is no car on one road,
say, road B. The numerical simulation results are shown in figure 8.
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Figure 9. The sketch of the on-ramp system where the main road has two lanes.

For vmax � 2, the maximum flow cannot be obtained from the mean-field approximation
and can only be obtained from numerical simulation. In figure 8, the horizontal lines represent
the maximum flow from simulation. From figure 8, one can obtain the same results as in the
case of vmax = 1.

In figure 3, the phase diagrams in the (a1, a2) space at different values of p are shown.
The phase diagram remains qualitatively the same as p varies. With increasing p, s1, s2, s3 and
s4 all decrease.

We investigate the dependence of the capacity on p. The simulations show that the
capacity as a whole decreases with increasing p (figure 4). Moreover, with increasing p,
the difference between the maximum and the minimum of the capacity becomes smaller and
smaller. When p = 0.35, the difference disappears and the capacity becomes a constant. This
constant is equal to the maximum flow.

4. Two-lane main road situation

In this section, we investigate the on-ramp system where the main road has two lanes. We still
assume the on-ramp links the main road from one cell C0. The upstream and the downstream
parts (including cell E0) of the left lane of the main road are called roads D and E, the remaining
parts are still named roads A, B and C (see figure 9).

The update rules of the system are classified into two sub-steps: (i) the vehicles on the
main road change lane according to the lane changing rules as if the on-ramp does not exist;
(ii) the velocities and positions of the vehicles on roads D and E are updated according to the
single-lane non-deterministic NS model, the velocities and positions of the vehicles on roads
A, B and C are updated according to the rules presented in section 3.

We adopt the lane changing rules as proposed in [14]. A vehicle i changes lane if the
following conditions are satisfied. (i) di < min(vi + 1, vmax); (ii) dother

i > di ; (iii) dback
i >

vmax. Here dother
i , dback

i denote the gaps to its two neighbour cars on the desired lane,
respectively.

We first consider the case vmax = 1. Similarly, we consider the special case that there
is no car on road B. This means a2 = 0, and the problem reduces to the non-deterministic
two-lane NS model problem in open boundary conditions. The numerical simulation results
are shown in figure 10. For a comparison, the results in figure 5 are also plotted in figure 10.
One can see that the results are similar to each other. Nevertheless, we note that the maximum
flow is higher in the two-lane situation. This is because lane changing occurs for the two-lane
situation, which enhances the maximum flow.

In figure 11, the phase diagrams in the (a1, a2) space at different values of p are shown. One
can see that, for the deterministic case, the phase diagram has two regions as in the single-lane
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Figure 10. The current on the main road in the case of a2 = 0 and vmax = 1 at different values of
p. The solid lines denote the results of the two-lane main road situation, the dashed lines denote
the results of the single-lane main road situation.
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Figure 11. The phase diagram of the on-ramp system of the two-lane main road situation in the
case vmax = 1. (a) p = 0; (b) p = 0.1; (c) p = 0.2; (d) p = 0.3.
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Figure 12. The current on the main road in the case a2 = 0 and vmax = 5 at different values of p.
The solid lines denote the results of the two-lane main road situation, the dashed lines denote the
results of the single-lane main road situation.
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Figure 13. The phase diagram of the on-ramp system of the two-lane main road situation in the
case vmax = 5. (a) p = 0; (b) p = 0.1; (c) p = 0.2; (d) p = 0.4.
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Figure 14. The dependence of the capacity of the on-ramp system of the two-lane main road
situation on a2 in the case vmax = 5 under different values of p.

main road case. However, with the introduction of randomization, a fifth region V appears
compared with those presented in figure 2, in which the traffic reaches maximum flow on the
on-ramp and is free flow on roads A and D. With increasing p, region V expands.

This is easy to understand. When the main road has two lanes, even if the on-ramp reaches
maximum flow, the capacity of the two-lane main road is not reached provided the flow rate
is small for roads A and D.

We also investigate the dependence of the capacity on p. Here the capacity is defined
as the maximum value of JC + JE divided by 2 under a given insertion probability a2. The
simulations show that the capacity always remains a constant that is equal to the maximum
flow of the two-lane situation, which is larger than that of the single-lane situation. With
increasing p, the constant capacity decreases.

Next we consider the case vmax � 2. Without loss of generality, we choose vmax = 5.
Similar to the case of vmax = 1, we consider the special case that there is no car on
road B. The numerical simulation results are shown in figure 12. For a comparison, the
results in figure 8 are also plotted in figure 12. One can see the similar results and the higher
maximum flow in the two-lane situation.

In figure 13, the phase diagrams in the (a1, a2) space at different values of p are shown.
The phase diagram of p = 0 is still qualitatively similar to that of the single lane main road
case, and for p > 0, the region V appears and expands with increasing p.

We investigate the dependence of the capacity on p. The simulations show a qualitatively
different result from those of the single lane main road case (see figure 14 (cf figure 4)).
For small p, the capacity is the maximum flow at a2 = 0, it decreases with increasing a2.
After it reaches a minimum value, it remains a constant. With increasing p, the capacity
as a whole decreases and the difference between the maximum and the minimum of the
capacity becomes smaller and smaller. When p = 0.4, the difference disappears and the
capacity becomes a constant. This constant is equal to the maximum flow.

5. Conclusions

In this paper, we investigate the effect of stochastic randomization on the on-ramp system using
the non-deterministic NS model. The variation of the phase diagram with the randomization
probability p is studied. It is shown that in the case of vmax = 1, with the introduction of
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stochastic randomization, two new regions appear whereas in the case of vmax � 2, stochastic
randomization has no qualitative influence on the phase diagram.

We also investigate the capacity of the on-ramp system. It is shown that in the case of
vmax = 1, the capacity always remains a constant. This constant capacity decreases with
increasing p and it is always equal to the maximum flow. As for vmax � 2, the capacity
depends on a2 when p is small and becomes a constant when p is sufficiently large.

Since in real traffic the main road often has two lanes, we extend our simulations to the
two-lane main road situation. It is shown that a new phase appears in this case for both
vmax = 1 and vmax � 2. The capacity issue is also studied. It is found that the capacity still
remains a constant for vmax = 1, and it still depends on a2 for vmax � 2 if p is small. But
the variation of capacity with a2 is different in the two-lane main road case from that in the
single-lane main road case.

Our simulations indicate that with the enhancement of stochastic randomization, the
capacity of the on-ramp system will decrease as in the single-lane circuit case. Thus, it is
suggested that efforts should be made to suppress the stochastic noise in real traffic in order
to improve the capacity.
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